SynRhythm: Learning a Deep Heart Rate Estimator

from General to Specific
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Problem

» Problem: Remote heart rate (HR) estimation from face video

Hand-crafted feature
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Learning-based representation

Pros:

> Interpretable

» Performing well in well-controlled
environment

Cons:

» Based on certain assumptions or
priors which may not suitable for
realistic situation

Pros:
» Strong modeling ability
» Robust in realistic situations

Cons:
» Large-scale data is needed for
training a robust estimator.

» Learning-based methods, especially deep convolutional neural networks
(DCNN), have shown great power in modeling complicated variations in a
number of computer vision tasks, such as object detection, and face
recognition.

» The challenges of applying deep learning for remote HR estimation lie In
that there is not sufficient data for training a robust DCNN that can
generalize to unseen scenarios. The periodical color change cause by HR
can be viewed as a one dimensional signal with low PSNR. Such a signal
can be simulated using a periodic function. Therefore, we propose to learn
a deep HR estimator from general to specific by synthesizing a large

number of HR signals.
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Synthetical Spatial
-temporal Maps

» Ground truth: 70 bpm
Prediction: 68 bpm

» Existing methods for remote HR estimation are mainly based on some
certain physical models or skin reflection priors, which may not hold In
realistic situations because of various challenges In head movement,
llumination variation and recording device.

Prediction: 59 bpm

Proposed Method

> Spatial-temporal HR signal representation
» Transform a video sequence of face to a good spatial-temporal representation

» General-to-specific learning approach with synthetic signal maps
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> Synthetic HR signal
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Experiments

> Database > Results
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