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 Problem: Remote heart rate (HR) estimation from face video

 Existing methods for remote HR estimation are mainly based on some
certain physical models or skin reflection priors, which may not hold in
realistic situations because of various challenges in head movement,
illumination variation and recording device.
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Proposed Method

 Spatial-temporal HR signal representation
 Transform a video sequence of face to a good spatial-temporal representation

General-to-specific learning approach with synthetic signal maps

 Synthetic HR signal

HR signal from a real face video

synthetic rhythm signal
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Problem Motivation
 Learning-based methods, especially deep convolutional neural networks

(DCNN), have shown great power in modeling complicated variations in a
number of computer vision tasks, such as object detection, and face
recognition.

 The challenges of applying deep learning for remote HR estimation lie in
that there is not sufficient data for training a robust DCNN that can
generalize to unseen scenarios. The periodical color change cause by HR
can be viewed as a one dimensional signal with low PSNR. Such a signal
can be simulated using a periodic function. Therefore, we propose to learn
a deep HR estimator from general to specific by synthesizing a large
number of HR signals.
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Results

Performance on MAHNOB-HCI

Performance on MMSE-HR Effectiveness of synthetic data
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Hand-crafted feature

Pros:
 Interpretable
 Performing well in well-controlled

environment
Cons:
 Based on certain assumptions or

priors which may not suitable for
realistic situation

Learning-based representation 
Pros:
 Strong modeling ability
 Robust in realistic situations

Cons:
 Large-scale data is needed for

training a robust estimator.

Database Subject Video Video length protocol
MAHNOB-HCI 27 527 30s three-fold

MMSE-HR 40 102 30s three-fold
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